Race Toward Quantum Computing | WHAT REALLY HAPPENED

Race Toward Quantum Computing

Researchers have created a new device that allows them to probe the interference of quasiparticles, potentially paving the way for the development of topological qubits.

Qubits, the units used to encode information in quantum computing, are not all created equal. Some researchers believe that topological qubits, which are tougher and less susceptible to environmental noise than other kinds, may be the best medium for pushing quantum computing forward.

Quantum physics deals with how fundamental particles interact and sometimes come together to form new particles called quasiparticles. Quasiparticles appear in fancy theoretical models, but observing and measuring them experimentally has been a challenge. With the creation of a new device that allows researchers to probe interference of quasiparticles, we may be one giant leap closer. The findings were published Monday in Nature Physics.

"We're able to probe these particles by making them interfere," said Michael Manfra, the Bill and Dee O'Brian Chair Professor of Physics and Astronomy at Purdue University. "People have been trying to do this for a long time, but there have been major technical challenges."

To study particles this small, Manfra's group builds teeny, tiny devices using a crystal growth technique that builds atomic layer by atomic layer, called molecular beam epitaxy. The devices are so small that they confine electrons to two dimensions. Like a marble rolling around on a tabletop, they can't move up or down.